Properties of objective functions and search algorithms in multi-objective optimization problems

نویسندگان

چکیده

Objectives . A frequently used method for obtaining Pareto-optimal solutions is to minimize a selected quality index under restrictions of the other indices, whose values are thus preset. For scalar objective function, global minimum sought that contains restricted indices as penalty terms. However, landscape such function has steep-ascent areas, which significantly complicate search minimum. This work compared results various heuristic algorithms in solving problems this type. In addition, possibility using sequential quadratic programming (SQP) method, not imposed terms, but included into Lagrange was investigated. Methods The experiments were conducted two analytically defined functions and encountered multi-objective optimization characteristics analog filters. corresponding realized MATLAB environment. Results only algorithm shown obtain optimal all particle swarm algorithm. applicable one filter functions, well appearing be superior speed accuracy search. found incapable finding correct solutions. Conclusions topical problem estimation applicability considered methods based on preliminary analysis properties determine indices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of sequential, multi-objective, and parallel interactive genetic algorithms for multi-objective optimization problems†

Evolutionary Computation (EC) is the field of computational systems that use ideas and get inspiration from natural evolution [1]. Genetic Algorithms (GA) fall into the category of EC. GA are a type of search and optimization algorithm based on the mechanisms of genetics and natural selection. The canonical form of GA encodes each candidate solution to a given problem as a binary, integer, or r...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Quasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems

In this paper‎, ‎we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data‎. ‎Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question‎, ‎then the essential properties of the newly introduced ...

متن کامل

Bayesian Optimization Algorithms for Multi-objective Optimization

In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies such that disruption of importan...

متن کامل

Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms

Bilevel optimization problems require every feasible upperlevel solution to satisfy optimality of a lower-level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy development, transportation problems, and others. In the context of a bilevel single objective problem, there exists a nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rossijskij tehnologi?eskij žurnal

سال: 2022

ISSN: ['2782-3210', '2500-316X']

DOI: https://doi.org/10.32362/2500-316x-2022-10-4-75-85